Contractibility of Maximal Ideal Spaces of Certain Algebras of Almost Periodic Functions
نویسنده
چکیده
We study some topological properties of maximal ideal spaces of certain algebras of almost periodic functions. Our main result is that such spaces are contractible. We present several analytic corollaries of this result. MSC: 42A75; 46J10
منابع مشابه
Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملTowards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds I
We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. The model examples ...
متن کاملTowards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds Ii
We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H). In particular, in this context we obtain results on holomorphic extension fr...
متن کاملTowards Oka-cartan Theory for Algebras of Fibrewise Bounded Holomorphic Functions on Coverings of Stein Manifolds Ii
We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H∞). In particular, in this context we obtain results on holomorphic extension f...
متن کاملTowards Oka-cartan Theory for Algebras of Fibrewise Bounded Holomorphic Functions on Coverings of Stein Manifolds I
We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the topics of holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. Our model examples c...
متن کامل